
Instructions for investigating patent US 9587003 B2

Open this link to access the patent

https://patents.google.com/patent/US9587003B2/en

Download the entire pdf file

Scroll down to page 51 in the file

51 of 304

- | +

Automatic Zoom

~

The present application is being filed along with a Sequence Listing in electronic format. The Sequence Listing file entitled MNC2USCON6SQLST.txt, created on Feb. 4, 35 2016 which is 91,364,237 Bytes in size. The information in electronic format of the sequence listing is incorporated by reference in its entirety.

REFERENCE TO LENGTHY TABLE

The specification includes a lengthy Table 6. Lengthy Table 6 has been submitted via EFS-Web in electronic format as follows: File name: MNC2TBL.txt, Date created: Feb. 4, 2016; File size: 538,729 Bytes and is incorporated 45 herein by reference in its entirety. Please refer to the end of the specification for access instructions.

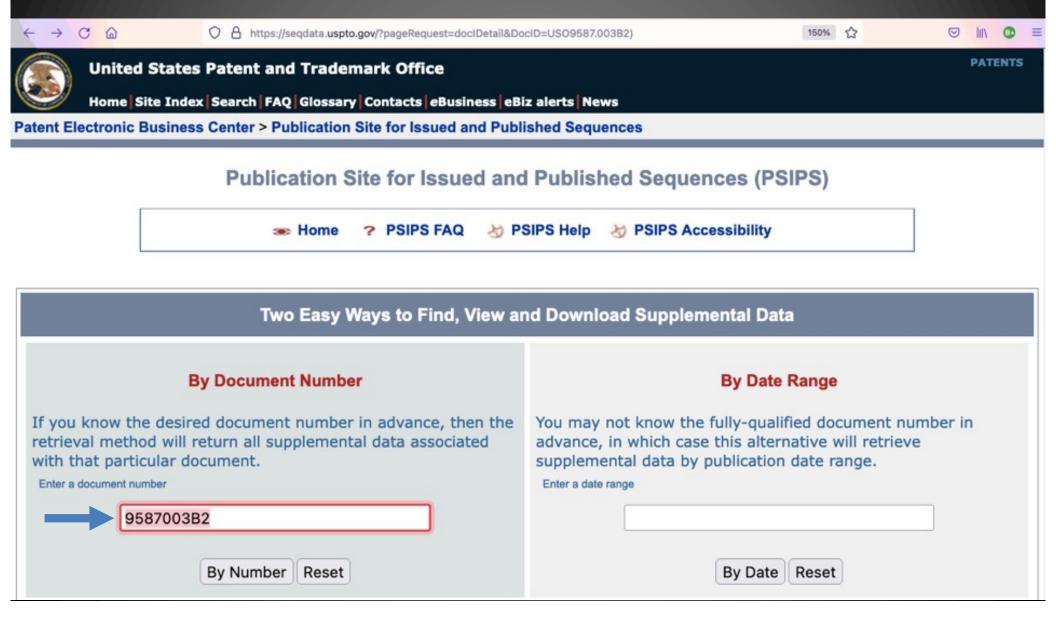
that avoid one or more of the problems in the art.

SUMMARY OF THE INVENTION

Described herein are compositions, methods, processes, kits and devices for the design, preparation, manufacture and/or formulation of modified mRNA (mmRNA) molecules encoding at least one oncology-related polypeptide of interest.

The present invention provides a method of treating a disease, disorder and/or condition in a subject in need thereof by increasing the level of an oncology-related polypeptide of interest comprising administering to said subject an isolated polynucleotide encoding said oncology-related polypeptide. The disease, disorder and/or condition may

LENGTHY TABLES


The patent contains a lengthy table section. A copy of the table is available in electronic form from the USPTO web site (http://seqdata.uspto.gov/?pageRequest=docDetail&DocID=US09587003B2). An electronic copy of the table will also be available from the USPTO upon request and payment of the fee set forth in 37 CFR 1.19(b)(3).

Open the link under the heading that says "LENGTHY TABLES"

LENGTHY TABLES

The patent contains a lengthy table section. A copy of the table is available in electronic form from the USPTO web site (http://seqdata.uspto.gov/?pageRequest=docDetail&DocID=US09587003B2). An electronic copy of the table will also be available from the USPTO upon request and payment of the fee set forth in 37 CFR 1.19(b)(3).

Enter the patent number into this box, then click on "By Number" to access the sequence

Enter sequence number 11652 in this box, then click on "Submit"

Supplemental Data Results for Patent # 9587003B2

Modified polynucleotides for the production of oncology-related proteins and peptides

Summary of Informatio	n
Number of Sequences	33915
Number of Lengthy Tables	1 🔯

Supplemental Results Section(s)

This document has 33915 sequences associated with it. If you would like to view one or more of these sequences, then indicate which numeric sequence or range of numeric sequences you would like to view in the text box below. For instance, let's say the document has 400 sequences. You can select any one of them for viewing by ordinal (say, "327"), or you can specify a range (e.g., "57-94"). Note that a large range may take a while to process; we recommend keeping ranges as small as possible. You can always hit "Back" and try a new sequence ID.

Your screen will display this sequence

United States Patent and Trademark Office

Home Site Index Search FAQ Glossary Contacts eBusiness eBiz alerts News

Patent Electronic Business Center > Publication Site for Issued and Published Sequences

Publication Site for Issued and Published Sequences (PSIPS)

Home

? PSIPS FAQ 🤲 PSIPS Help 🤚 PSIPS Accessibility

Viewing Sequence(s): 11652 of 33915 for Document # 9587003B2

Search Format

View Sequence ID No:

View Sequence

SEO ID NO 11652 LENGTH: 3387 TYPE: DNA

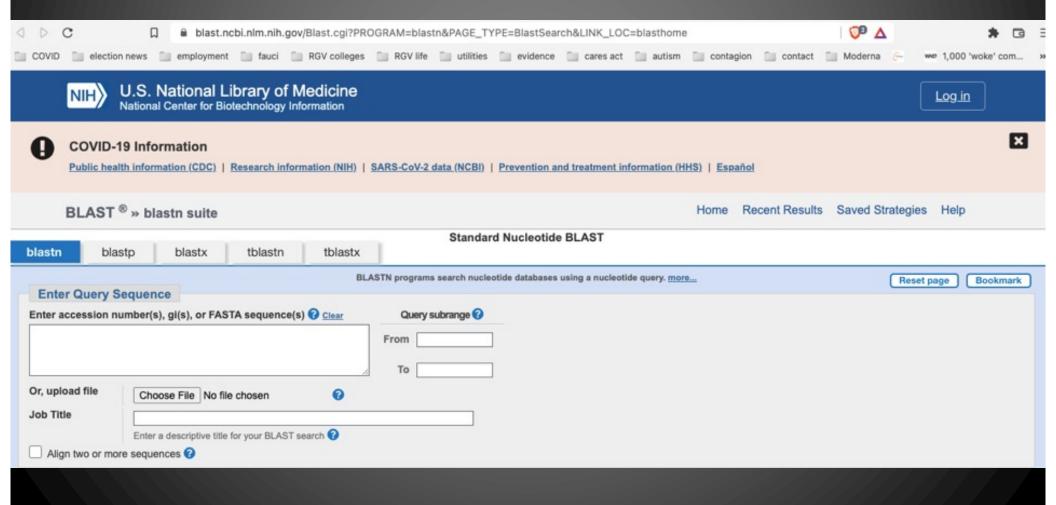
ORGANISM: Artificial Sequence

FEATURE:

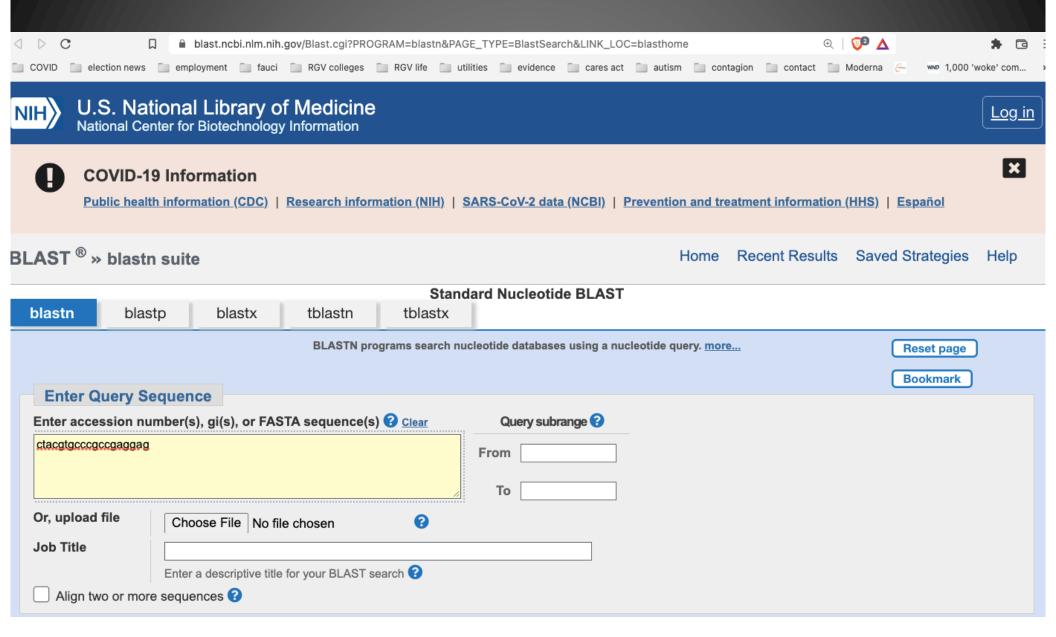
OTHER INFORMATION: Description of Artificial Sequence: Synthetic

coding sequence

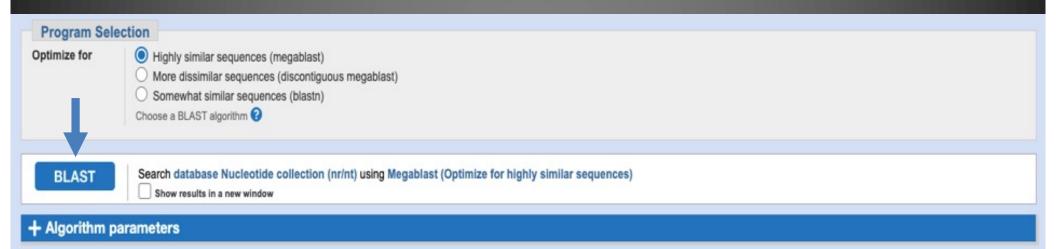
SEOUENCE: 11652

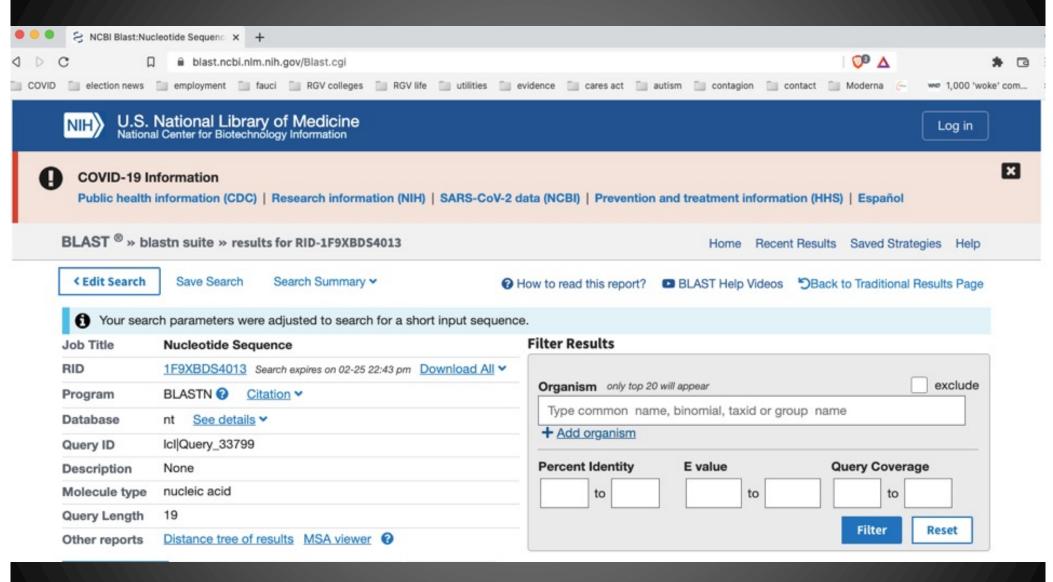

Highlight then copy this 19-letter sequence found in the 2760 region

ctgcaggaga	tcagaaagat	cctgaagaac	cccagcgccc	agtacgtgac	cgtgagcggc	2220
caggagttca	tgatcgagat	caagaacagc	gccgtgagct	gcatccccac	cgactgggtg	2280
aaggtgggca	gcaccaaggc	cgtgagcaga	ttccacagcc	ccttcatcgt	ggagaactac	2340
agacacctga	accagctgag	agagcagctg	gtgctggact	gcagcgccga	gtggctggac	2400
ttcctggaga	agttcagcga	gcactaccac	agcctgtgca	aggccgtgca	ccacctggcc	2460
accgtggact	gcatcttcag	cctggccaag	gtggccaagc	agggcgacta	ctgcagaccc	2520
accgtgcagg	aggagagaaa	gatcgtgatc	aagaacggca	gacaccccgt	gatcgacgtg	2580
ctgctgggcg	agcaggacca	gtacgtgccc	aacaacaccg	acctgagcga	ggacagcgag	2640
agagtgatga	tcatcaccgg	ccccaacatg	ggcggcaaga	gcagctacat	caagcaggtg	2700
gccctgatca	ccatcatggc	ccagatcggc	agctacgtgc	ccgccgagga	ggccaccatc	2760
ggcatcgtgg	acggcatctt	caccagaatg	ggcgccgccg	acaacatcta	caagggccag	2820
agcaccttca	tggaggagct	gaccgacacc	gccgagatca	tcagaaaggc	caccagccag	2880


Open a new browser instance, then proceed to open NIH's database of gene sequences

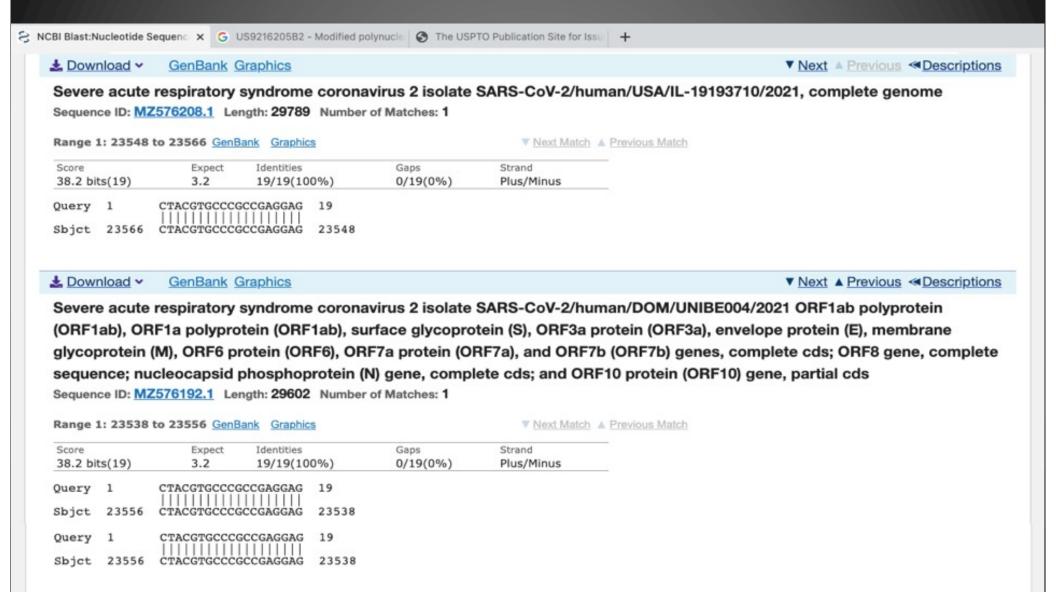
https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=b lastn&PAGE TYPE=BlastSearch&LINK LOC=blasthome


Your page will appear like this


Place cursor in the "Enter Query Sequence" box indicated and paste copied sequence

Scroll down to the bottom and then click on "BLAST"

The search may take 5 minutes. Be patient!



Your page will eventually appear like this

Scroll down and you will find links to all nucleotide sequences uploaded to NIH

Se	quences producing significant alignments	Download ×	New S	Select	colun	nns Y	Show	100	· •
~	select all 100 sequences selected	GenBank G	raphics	<u>Di</u>	stance	tree of	results	New	MSA Viewer
	Description	Scientific Name	Max Score	Total Score		E value	Per. Ident	Acc. Len	Accession
✓	Severe acute respiratory syndrome coronavirus 2 isolate SARS-CoV-2/human/USA/AZ-CDC-LC0527810/2022 O	. Severe acute res	38.2	38.2	100%	4.4	100.00%	29232	OM724686.
✓	Severe acute respiratory syndrome coronavirus 2 isolate SARS-CoV-2/human/SouthAfrica/NHLS-UCT-GS-1821/	Severe acute res	38.2	38.2	100%	4.4	100.00%	29849	OM725650.
~	Severe acute respiratory syndrome coronavirus 2 isolate SARS-CoV-2/human/SouthAfrica/NHLS-UCT-GS-1813/	Severe acute res	38.2	38.2	100%	4.4	100.00%	29831	OM725649.
~	Severe acute respiratory syndrome coronavirus 2 isolate SARS-CoV-2/human/SouthAfrica/NHLS-UCT-GS-1808/	Severe acute res	38.2	38.2	100%	4.4	100.00%	29837	OM725648.
✓	Severe acute respiratory syndrome coronavirus 2 isolate SARS-CoV-2/human/SouthAfrica/NHLS-UCT-GS-1807/	Severe acute res	38.2	38.2	100%	4.4	100.00%	29827	OM725647.
~	Severe acute respiratory syndrome coronavirus 2 isolate SARS-CoV-2/human/SouthAfrica/NHLS-UCT-GS-1783/	Severe acute res	38.2	38.2	100%	4.4	100.00%	29837	OM725646.
✓	Severe acute respiratory syndrome coronavirus 2 isolate SARS-CoV-2/human/SouthAfrica/NHLS-UCT-GS-1782/	Severe acute res	38.2	38.2	100%	4.4	100.00%	29823	OM725645.
✓	Severe acute respiratory syndrome coronavirus 2 isolate SARS-CoV-2/human/SouthAfrica/NHLS-UCT-GS-1781/	Severe acute res	38.2	38.2	100%	4.4	100.00%	29856	OM725644.
~	Severe acute respiratory syndrome coronavirus 2 isolate SARS-CoV-2/human/SouthAfrica/NHLS-UCT-GS-1780/	Severe acute res	38.2	38.2	100%	4.4	100.00%	29835	OM725643.
✓	Severe acute respiratory syndrome coronavirus 2 isolate SARS-CoV-2/human/SouthAfrica/NHLS-UCT-GS-1779/	Severe acute res	38.2	38.2	100%	4.4	100.00%	29830	OM725642.
✓	Severe acute respiratory syndrome coronavirus 2 isolate SARS-CoV-2/human/SouthAfrica/NHLS-UCT-GS-1777/	Severe acute res	38.2	38.2	100%	4.4	100.00%	29830	OM725641.
✓	Severe acute respiratory syndrome coronavirus 2 isolate SARS-CoV-2/human/SouthAfrica/NHLS-UCT-GS-1776/	Severe acute res	38.2	38.2	100%	4.4	100.00%	29835	OM725640.
~	Severe acute respiratory syndrome coronavirus 2 isolate SARS-CoV-2/human/SouthAfrica/NHLS-UCT-GS-1774/	Severe acute res	38.2	38.2	100%	4.4	100.00%	29827	OM725639.
✓	Severe acute respiratory syndrome coronavirus 2 isolate SARS-CoV-2/human/SouthAfrica/NHLS-UCT-GS-1772/	Severe acute res	38.2	38.2	100%	4.4	100.00%	29823	OM725638.
~	Severe acute respiratory syndrome coronavirus 2 isolate SARS-CoV-2/human/SouthAfrica/NHLS-UCT-GS-1770/	Severe acute res	38.2	38.2	100%	4.4	100.00%	29819	OM725637.
~	Severe acute respiratory syndrome coronavirus 2 isolate SARS-CoV-2/human/SouthAfrica/NHLS-UCT-GS-1763/	Severe acute res	38.2	38.2	100%	4.4	100.00%	29815	OM725636.
✓	Severe acute respiratory syndrome coronavirus 2 isolate SARS-CoV-2/human/SouthAfrica/NHLS-UCT-GS-1695/	Severe acute res	38.2	38.2	100%	4.4	100.00%	29815	OM725635.
~	Severe acute respiratory syndrome coronavirus 2 isolate SARS-CoV-2/human/SouthAfrica/NHLS-UCT-GS-1671	Severe acute res	38.2	38.2	100%	4.4	100.00%	29833	OM725634.
V	Severe acute respiratory syndrome coronavirus 2 isolate SARS-CoV-2/human/SouthAfrica/NHLS-UCT-GS-1653	Severe acute res	38.2	38.2	100%	4.4	100.00%	29874	OM725633.1

This is a sample of what you might see if you open one of these sequence links

What is the significance of these results?

- 1. In 2013 Moderna applied to patent a "modified polynucleotide" that contains a 19-base sequence that is the reverse compliment of a 19-base sequence in the COVID-19 virus.
- 2. This 19-base sequence does not occur in any other virus listed in the NIH database
- 3. This 19-base sequence contains the "furin cleavage site" (PRRAR)
- 4. The furin cleavage site plays a key role facilitating entry of the COVID-19 virus into human cells
- 5. The probability that the same 19-base sequence appeared in the virus by means of natural selection is 1 out of 3.6 trillion.

ACKNOWLEDGMENTS:

The power point is based on information provided in the following article:

Your research can change the world More on impact >

Emerging and Reemerging Viruses

MSH3 Homology and Potential Recombination Link to SARS-CoV-2 Furin Cleavage Site

_	Balamurali K. Ambati ¹ , 👱	Akhil Varshney², 🥷 Kenneth Lundstrom³*, 🔼 Giorgio Palú⁴, 🔝 Bruc	e D.
Uh	al ⁵ , 🥅 Vladimir N. Uversky	y ⁶ and Adam M. Brufsky ⁷	

https://www.frontiersin.org/articles/10.3389/fviro.2022.834808/full

¹Knight's Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, United States

²Dr. Shroff's Charity Eye Hospital, New Delhi, India

³PanTherapeutics, Lutry, Switzerland

⁴Department of Molecular Medicine, University of Padova, Padova, Italy

⁵Department of Physiology, Michigan State University, East Lansing, MI, United States

⁶Department of Molecular Medicine, Morsani College of Medicine, University of South Florida (USF) Health Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, United States

⁷Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States